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Abstract:

In this research, we have proposed the numerical application of second derivative ordinary differential equations

using power series for the direct solution of higher order initial value problems. The method was derived using
power series, via interpolation and collocation procedure. The analysis of the method was studied, and it was found
to be consistent, zero-stable and convergent. The derived method was able to solve highly stiff problems without
converting to the equivalents system of first order ODEs. The generated results showed that the derived methods
are notable better than those methods in literature. We further sketched the solution graph of our method and it is
evident that the new method convergence toward the exact solution.
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Introduction
Mathematical modeling of real-life problems usually result

into functional equation, for example, Ordinary differential
equation and Partial differential equation, Integro and Integral
differential equation, Stochastic differential equation and
others. Not all ordinary differential equations such as those
used to model real life problems can be solved analytically,
Omar (2004).

Most of the problems in science, mathematical physics and
engineering are formulated by differential equations. The
solution of differential equations is a significant part to
develop the various modeling in science and engineering.
There are many analytical methods for finding the solution of
ordinary differential equations. But a few numbers of
differential equations have analytic solutions where a large
numbers of differential equations have no analytic solutions.
In recent years, mathematical modeling of processes in
biology, physics and medicine, particular in dynamic
problems, cooling of a body and simple harmonic motion has
led to significant scientific advances, both in mathematics and
biosciences (Brauer & Castillo, 2012; Elazzouzi et al., 2019).
The applications of mathematics in biology and physics are
completely opening new pathways of interactions, and this is
certainly true, particular in areas like dynamic problems and
cooling of a body.

This research considered the solution of high order initial
value problems (1\VPs) of ODEsof the form

y'=tty.y) @)=y, y@=mn ay

Equation (1.1) occurs in deferent fields of applied
mathematics, among which are elasticity, fluid mechanics,
and quantum mechanics as well as in engineering and physics.
The existence and uniqueness of the solution for these
equation have been discussed in Wend (1969). In general,
finding the exact solutions of these equation is not easy. Over
the years, deferent numerical methods have been developed in
order to approximate the solution of equation (1.1). Among
these methods are block method, linear multistep method,
hybrid method and rung-kutta method, etc. (Lambert, 1973;
Gear, 1966, 1971, 1978; Suleiman, 1979, 1989). Recently,
some efforts have been made to develop hybrid block method
for solving (1.1) directly; among others are Kuboye & Omar
(2015), Omar & Abdelrahim (2016), Abdelrahim & Omar

(2016), Alkasassbeh & Omar (2017), Skwame et al. (2019a,
2019b). However, these methods are focused on specific
points (specifically, second order IVPs).

Mathematical Formulation of the Method
Power series polynomial of the form

p+9-1

y(t)= ;ajtj

is considered as a basis function to approximate the solution
of the initial value problems of general second order ordinary
differential equation of the form

y'=tty.y)y@)=Y, y@=y, e
method is derived by the introduction of off-mesh points
through one-step scheme following the method of Gragg and
Stetter (1964), Gear (1964), Butcher (1965), and recently
Omar & Adeyeye (2016), Omole & Ogunware (2018), Kamo
et al. (2018), Skwame et al. (2019b).

Using (2.1) with P =2and( =7, the polynomial is as
follows;

2.1)

8 .
y(t)=>a;t’ (2.3)
j=0
Differentiating (12.3) twice, to yield
8 .
y'(t)=>"i(i-1)a;t"? 24)
j=0

Substituting (2.3) into (2.1) to yield

8 .
ZJ(J —1)aj ti? = f(t, Y, y') (2.5)
i0

Now, interpolating (2.3) at g and g and collocating (2.5) at

0, i, E, g, Z, 8 and 1l lead to a system of equation
99399
written in a matrix form below;
TA=U (2.6)
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0o o0 20 et 1 20 30tf 42®  set® || | ¢
0 o0 2%, et', 12°, 20t*, 30t‘, 42°, 56t°, | %] |+
n+— n+— n+— n+— n+— n+— - || a N+
0 9 L 9 ) 9 s 9 . 9 5 9 6 9 3
0 0 A%, 6, 127, 200, 30, 4%, 56, ||, || f . o

0 0 2°, 6t', 122, 20t°, 30t*, 425, 56t°, (3| |f

0 0 20 et 1. 200 3ot 4z sec ||| |f
7 7 7 7 7 7 7 a

n+— n+— n+— n+— n+— n+— n+— 7 n+y
9 9 9 9 9 9 9 f

0o 0 2a°, et', 1%, 20t°, 30t*, 42a°, 56t°, |[a] |T s
n0+§ nl+§ n2+§ n3+§ n4+§ n5+§ n6+§ ¢

0 0 2tn+l 6tn+l 12tn+1 20tn+l 30tn+1 42tn+1 56tn+l i Lot

Using Gaussian elimination method, (2.7) is solved for the @; 'S . The values of the a; 'S obtained are then substituted into

(2.1), after some manipulations, this gives a continuous hybrid linear multistep method of the form;

|
y(t):ag(t)ymg +a§(t)yn+§ +h? Zﬂ] (t)fmj +p5, (t)fmvi V=0 = oo (2.8)
9

9 9 9 j=0

Evaluating (2.8) non interpolating points to obtain the continuous form as,
312889f, +26577810f , —63742392f , +79840824f ,
n n+§ n

+— +=
9 3

41150592y, - 205752960y , +164602368y , =h’

- : —54941904f , +20107773f , —3074680f ,,
n+§ n+6
221f —408870f , —4312728f , —270312f ,
41150592y , +411505920y , —823011840y , =—h? s * $
ni nd ne -137232f , +57393f , -8792f,,
9 9
137f, —264222f , —3049704f , —1540392f ,
137168640y , +274337280y , —411505920y  =-h? $ K s
e nd nes -268272f , +48573f , -6440f, ,
9 9
95f —195426f , —2329992f , —1575672f
68584320y , +205752960y , —274337280y , =—h’ ’ ’ :
nes nd ned -933552f , -44037f , -1736f,,
9 9
95f —160146f , —1857240f . -1476888f ,
41150592y, ., +164602368y , —205752960y . =—h? $ $ E
Yo Yot % 1032336f , ~516789f , —37016f (2.9)
n+§ n+§
Differentiating (2.8) once, yields
L 45278
] 1 1 2 1 1
y(t):a4(t)y 4+a5(t)y 5+h Zﬂj(t)fn+j+ﬂvi (t)fnJrvi 1Vi=01_1_1_1_;_ (2.10)
6 nJr§ 5 n+§ =0 9 9 3 9 9

On evaluating (2.10) at all point, yield the discrete scheme as;
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955509f, +36681610f , —98376152f , +126893144f ,
10160640hy',+91445760y , —91445760y , =—h’ ° ° s
ned ned —88948624f , +32959913f , —5085080f,,,

9 9

955f, — 2607066 , —3848040f , +2232552f ,
n ned 2

91445760hy' ,+823011840y , —823011840y , =h? o °
nt nid nd ~1180656f , +374031f , —52136f, .,

9 9
731f, —962010f , —5350968f , +1948296f ,
91445760hy' ,~823011840y , —823011840y , =—h? s °
nd it ms

9 n+1

—977616f ,+302967f ,—41720f
nil neg

9

3f,-11162f ,-160616f ,—76312f ,+7184f ,
o ned nel n
9

4
4 +L
9 3 9

1451520hy' ,+13063680y , —13063680y , =—h®
"s " "3 n+l

-1105f ,+88f
nd

571f, —828954f , —9270072f —-10787448f ,

91445760hy' ,+823011840y , —823011840 =—h? ° °
yng ymg yn+§ —4931280f , +466263f , —50680f,,, (2.11)
nel ne

9
29f —683046f ,-10086552f . —-8511720f ,
nis ne ez

91445760hy' ,+823011840y , —823011840y ., =—h? ° y
nd ned ned ~1253752f , —3857679f , +108480f,,

z 8
9 9

10160640hy' . +91445760 —9144576 =—h? o o
Vi Yot ¥, —628816f , —1607809f , —349496f,
nl "2

195f, —121226f , —888440f , —1484728f ,
e nid m2

Equation (2.9) and (2.11) can be written explicitly as

27481f, + 770490f , —2213568f , +2901696f ,
2 5 n+g neg n+2
1607445 | —2054016f , +766017f , —118720f

+— +—
9 9

293921f, +8952930f , —25216632f . +32907000f

4
Y a=Yatghya+
9 n+1

25 R n+g n+g n+§

S —"
164602368 | —23230800f , +8648325f , —1338680f,,,

9

5 ..
y S:yn+§hyn+

n+=
9

4373f, +139860f , —388584f . +506940f ,
+ n+ n+§

2 ' 1 2 9 9

Y ;=Y. +5hy,+ h

ne2 3 79380 | —357264f , +132867f , —20552f,,,

9 9
22465f, + 741762f , —2042712f _ +2668344f ,

R 2 A RV ; ° :

el 9 16796160 | —1875600f , +697221f , —107800f,,

9 9
3817f, +128898f , —352800f . +461328f ,

32 .. = . 2
1607445 | —323136f , +120330f , —18592f

8, .,
Y g =Y. +tZhy +
n+g 9

32527f, +1116990f , —3043656f . +3983112f ,

Yau = Yo Ny o2 ° °
376320 |-—2782512f , +1041579f , —159880f,,,
+§ n+§
8399f, +319851f , —868392f , +1117452f ,

n+— n+= n+=
2 9 9 3

+-————h
" 178605 | —782928f , +290052f , —44744f
n+ n+§

9

Yot =Y
s

171977f, + 6621930f , —17600688f . +22801800f ,
+ n+ n+3

Yy, 5=y, +——h 9 9
s 9144576 | —15991200f , +5926725f , —914480f, ,
”*g n+§
9953f, +382914f , —1013040f . +1327368f ,
, , 1 n+5 |'|+§ n+=

yn+g:yn
3

9

+———h
105840 | —927072f , +343413f , —52976f
nel n+
12535f, +482454f , —1277136f , +1680504f , 212
7 h n+6 n+5 n+§ ( . )
933120 | —1159776f , +431739f , —66640f, ,

yn+%:yn+

4199f, +161532f , —427392f . +561792f ,

Y8 = y'ﬁLh B 9
s 178605 | —384768f , +146727f , —22400f,
"HE n+§
5897f, +227178f , —601776f , +792456f ,
yln+1 = yln+ ° ° 8

9

———h
62720 | —545184f , +213381f , —29232f, ,
n+ n+§
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Basic properties of the method

In this section, the analysis of the block method, which includes the order, error constant, consistency, zero stability,
convergence and region of absolute stability region of the method shall be study.

Order and error constant

Let the linear operator defined on the method be b4 [y (X); h] , Where,

Ay 00: = A= 3 I8 g () (Y, ) o

Expanding Y, and F (Ym) in Taylor series and comparing the coefficients of h gives

. 1 1 1 2 2
Afy(x):h}=Coy(x)+Cy'(x)+-+-+C hPyP(x)+C, h "y P (x)+ Co 0 2y P2 () +- (32)
Definition 3.1: The linear operator L and the associate block method are said to be of order p if

C,=C, =---= Cp = Cp+1 =0, Cp+2 = 0. Cp+2 is called the error constant. It implies that the local truncation
erroris given by T, = Cp+2h pr2 y 3 (X)+ O(h p+3)
Ly (x): hf=Coy(x)+Cpy'(x)+-+-+C h"y (x)+C, h " yP*(x)+ C, ,hP 2y P2 (x) + -

Expanding the block in Taylor series expansion, gives

(4)" 4892(ﬂ) . 7808(§)+ 276352(3)
i 9) _y 4, 54962 hy"n—ihﬁa yie 510319 2835(9) 765453
= ]! 9 1607445 = ! _456448(Z)+386(8j 6784 )
178605\9) 405(9) 45927
(5}1' 197375(% B 1250825(§j N 4896875(;)
5 o) , 5y, _ 7348025 ., _ihﬁayﬁg 1451529 ) 326592\9) 979776 (3
=L " 9 ° " 164602368 ~ " % j! 7" _149375(1] 3431875(§]_ 85375 )
42336\9) 2612736\9) 419904
2’ 37 514(5) 1207
i(sj Ly 2y 4373 ihl“ e 21(9) 105[9] 189 [3)
=L 3 79380 =0 _@3[ j 703( j 734 )
7359/ 420\9) 2835
(7)" 2019241(4} 463393(5J+5447869(gj
i 9) _y Tpye 220157, ., ihﬁ?’ s 93312009) 77760(9) 6998403
= ! "9 7" 3359232 7 " & I 127645[7) 1265327(8) 132055 ;)
23328\9) 62208019/ 419904
(8jj 21824[ j 5120( j+702976(gj
i 9) ., 8y, 122144, _ih’“ o] 850519) 72919/ 76545|3 (3:3)
= 9 1607445" i _382976(7]+12224(§j_ 84992 )
595359/ 510319/ 229635
5319[&}_18117(§j+3387(gj
z (1)’ . 32527 Z hiv yirs| 179319/ 224009 32013
,Z;‘T Yo =Y~ 576320"Y ,Z; P _57969(Z]+49599(§j_ 571 ;)
i 78409/ 1792019/ 1344

Comparing the coefficient ofN, the order P of the method and the error constant are given respectively by
p=[5 5 5 5 5 5[ and
= [1.7180>< 1077 1.7159x1077 1.7167x107" 1.7160x10"" 1.7171x107" 1.7131x10”’

Consistency of the method
A numerical method is said to be consistent if its order p > 1. Our method is thus consistent since it is of uniform order 5. Note

that consistency controls the magnitude of the local truncation error committed at each stage of the computation, Fatunla (1988).

FUW Trends in Science & Technology Journal, www.ftstjournal.com
e-ISSN: 24085162; p-ISSN: 20485170; December, 2021: Vol. 6 No. 3 pp. 868 - 876 871



http://www.ftstjournal.com/

Numerical Application of Second Derivative Ordinary Differential Equations
Zero stability of the method

Definition 3.2: the numerical method is said to be zero-stable, if the roots Zs, S= 1, 2, Ty k of the first characteristics

0
polynomial (z) defined by ,O(Z) = det (ZA( ) - E) satisfies ‘Zs‘ <1 and every root satisfies ‘Zs‘ =1 have

multiplicity not exceeding the order of the differential equation, Sunday (2018). The first characteristic polynomial is given by,

1 00 00 0] [0 O0OO O 1 z 000 O0 -1

01 0O0O0O 0 00O0O01 0z 000 -1

0 01 0O0O 0 00O0O01 0 0z 00 -1 5
p(z)=|z - = =2°(z-1)

0 0O0O1O0O0 0 00O0O01 0 00 z 0 -1

0 0O0OO0O1O 0 00O0O01 0 000z -1

000001/ 000001 00000 z-1]

Thus, solving for zin

5
2*(2-1) (34)
gives z =0, 0,0,0, 0O, 1. Hence the block method is said to be zero stable.

Convergence of the block method

Theorem 3.1: the necessary and sufficient conditions for linear multistep method to be convergent are that it must be consistent
and zero-stable. Hence our method formulated is consistent (Skwame et al., 2019).

Region of absolute stability of our method

Definition 3.3: the region of absolute stability is the region of the complex Z plane, where z = A h for which the method is

absolute stable. To determine the region of absolute stability of the block method, the methods that compare neither the
computation of roots of a polynomial nor solving of simultaneous inequalities was adopted. Thus, the method according to Yan
(2011) is called the boundary locus method. Applying this methodon (2.12), we obtain the stability polynomial as
E(w):h“[ 653 | s, 5 WG)* hm[i 2509 & 2653571 wf’)
308629440 177147 6200145 12962436480
hg( 27386717 W+ 12287 w6j+rﬁ( 13 w® 1459 w5)+rﬁ( 138696553W5+ 625 W6J

(3.5)

172832486400 2755620 T 378 604800 " 2133734400 3402
+ hz(—Ew6 - 19141w5)— 2w® + w
21 75264

On applying the stability polynomial (3.5), we obtain the region of absolute stability in Fig 1.

0.6 /,/—' \\\
.. BN
. \

-0.4 //
-0.6 — _,,/
-0.8 -
-0.4 -0.3 -0.2 -0.1 o 0.1 0.2 0.3 0.4
Re(z)

Fig. 1: Region of absolute stability of the method
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Numerical implementation of the method

In this section, it is important to state that the method
formulated can be used to implement differential equations of
the form (1.1) without reducing it to an equivalent system of
first order. We test the effectiveness and validity of our newly
derived method by applying it to some real life problems and
second order highly stiff initial value problems of the form
(2.1). Our result are compared with the existing methods of
Skwame et al. (2017), Areo & Omojola (2015), Omole &

F(t)=53int. Find the subsequent motion of the mass
('[ :0.10<t Sl.OO) if the force due to air resistance is

90(%% .
dt
where m=10, k =140, a=90and F(t)=5sint

The equation can be written as

Ogunware (2018), Olanegan et al. (2018), Adeyefa et al.
(2018), Kayode & Adegboro (2018).

Problem 1: Real-life problem
Dynamic problems

dt?

2
dsolve{{d X +9—+14x

With analytic solution is given by

A 10kg mass is attached to a spring having a spring

constant 0f140 N/l\/l . The mass is set in motion from the

equilibrium position with an initial velocity of 1 m/sec in the
upward direction and with an applied external

force

Table 1: Showing the comparison of Problem 1

x(t)

Source: Skwame et al. (2017) and Areo & Omojola (2015).

1

()~ Lsinft) x0)-0,x(0)- _18

—~_(~90e* +99e ™ +13sint—9cost)
500

Error in our Errorin Error in Areo &
X Exact Result Computed Result Skwame et al. .
Method (2017) Omojola (2015)
0.1  -0.06436205154552458248 -0.06436205102813963251 5.173%-10 1.0647e-07 1.2744e-08
0.2  -0.08430720522644774945 -0.08430720423489605205  9.9155e-10 1.1870e-06 3.0442¢-08
0.3  -0.08405225313390041905 -0.08405225388560049594  7.5170e-10 2.2635e-06 4.1501e-08
0.4  -0.07529304213333374810 -0.07529304281786442748  6.8453e-10 2.8219e-06 4.5385e-08
0.5 -0.06357063960355798563 -0.06357063934273678993  2.6082e-10 2.9539e-06 4.4298e-08
0.6 -0.05142117069384508163 -0.05142117055138588829 1.4246e-10 2.8187e-06 4.0466e-08
0.7  -0.03993052956438697070 -0.03993052856491394937 9.9947e-10 2.5466e-06 3.5475e-08
0.8 -0.02949865862803573900 -0.02949865777324012431 8.5480e-10 2.2235 -06 3.0285e-08
0.9 -0.02021269131259124546 -0.02021269059230590628  7.2030e-10 1.8991e-06 2.5408e-08
1.0 -0.01202699425403169607 -0.01202699365301409334  6.0102e-10 1.5988e-06 2.1071e-08
0%
_10% 1 2 3 4 5 & & o 10
-20%
-30%
-40%
-50%
-60%
-F0%s
-B0%
Exact Result Computed Result
-a0%
-100%

Fig. 2: Graphical solution of Problem 1

Problem 2: Real-life problem

Cooling of a body

The temperature Y degrees of a body, t minutes after being

placed in a certain room, satisfies the differential equation
d’y d

3 2y+—y=0. By using the substitution Z =—yor
dt® dt dt

otherwise, find Y in terms of tgiven that Y =60 when

t=0 and ¥ =35 whent =6In4. Find after how many

minutes the rate of cooling of the body will have fallen below
one degree per minute, giving your answer correct to the
nearest minute. How cool does the body get?
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y"=_7y', y(0)=60, y'(0)= —89—01 h=01

With analytic solution is given by

NEaN
y(x):%e 5) +£30.

Source: Omole & Ogunware (2018) and Olanegan et al.
(2018).
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Table 2: Showing the comparison of problem 2

. . Errorin
X Exact Result Computed Result Er,(/(l)rtlhn gur Iérror in Omzo(;ig& Olanegan et
etho gunware (. ) al, (2018)
0.1 59.12576267952015738700 59.12576267952015738700 0.0000 3.5500e-11 7.4764e-06
0.2 58.28018626750980633900 58.28018626750980633900 0.0000 4.5800e-11 2.9394e-05
0.3 57.46233114762558861700 57.46233114762558861700 0.0000 7.0000e-11 6.4802e-05
0.4 56.67128850781193210600 56.67128850781193210600 0.0000 6.5000e-12 1.1279e-05
0.5 55.90617933041637530700 55.90617933041637530700 0.0000 3.3300e-11 1.7250e-04
0.6 55.16615341541284956400 55.16615341541284956400 0.0000 4.2000e-11 2.4310e-04
0.7 54.45038843564751105000 54.45038843564751105000 0.0000 4.3800e-11 3.2383e-04
0.8 53.75808902305729847200 53.75808902305729847200 0.0000 1.0700e-10 4.1393e-04
0.9 53.08848588484580976200 53.08848588484580976200 0.0000 6.5800e-11 5.1271e-04
1.0 52.44083494863438001100 52.44083494863438001100 0.0000 1.6900e-10 6.1951e-04
100%
o0%
B0%
70%
60%
50%
40%
30%
20%
Exact Result Computed Result
10%
0%
1 2 3 4 5 ] 7 & ] 10 11
Fig. 3: Graphical solution of Problem 2
Problem 3
Consider a highly stiff linear second order problem
y'=y', y(0)=0,y'(0)=-1Lh=0.1
With analytic solution is given by
y(x)=1-exp(x).
Source: Omole & Ogunware (2018), Adeyefa et al. (2018), Kayode & Adegboro (2018).
Table 3: Showing the comparison of Problem 3
Error in . Errorin
. Errorin
X Exact Result Computed Result Errorin Omole & Adeyefa et Kayode &
our Method ~ Ogunware al. (2018) Adegboro
(2018) ' (2018)
0.1 -0.1051709180756476248 -0.10517091807564746098 1.6382e-16 7.5650e-11 3.2482e-12 -
0.2 -0.2214027581601698339 -0.22140275816016928012 5.5378e-16 1.6017e-10 8.5643e-11 3.4602e-09
0.3 -0.3498588075760031040 -0.34985880757600188832 1.2157e-15 1.7600e-10 3.4401e-10 5.6760e-09
0.4 -0.4918246976412703178 -0.49182469764126811552 2.2023e-15 6.0784e-10 7.4251e-10 7.6413e-09
0.5 -0.6487212707001281468 -0.64872127070012457213 3.5747e-15 1.4729e-09 1.3785e-09 1.0497e-08
0.6 -0.8221188003905089749 -0.82211880039050357175 5.4032e-15 2.5336e-09 2.2193e-09 1.4495e-08
0.7 -1.0137527074704765216 -1.01375270747046875340 7.7682e-15 4.7876e-09 3.3875e-09 1.8782e-08
0.8 -1.2255409284924676046 -1.22554092849245684180 1.0763e-14 7.2770e-09 4.8470e-09 2.2799e-08
0.9 -1.4596031111569496638 -1.45960311115693517090 1.4493e-14 1.0170e-08 6.7518e-09 2.8258e-08
1.0 -1.7182818284590452354 -1.71828182845902615500 1.9080e-14 1.4827e-08 9.0628e-09 3.5547e-08
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Fig. 3: Graphical solution of Problem 3

Discussion and Conclusion

In this research, we have proposed the numerical application
of second derivative ordinary differential equations for the
direct solution of higher order initial value problems. The
method was derived using power series, via interpolation and
collocation procedure. The analysis of the method was
studied, and it was found to be consistent, zero-stable and
convergent. The derived method able to solve some highly
stiff second ODEs problems without converting to the
equivalents system of first order ODEs. The generated results,
as appear in the tables 4.1-4.3, shown that the derived
methods are more accurate than the existing method of
Skwame et al. (2017), Areo & Omojola (2015), Omole &
Ogunware (2018), Olanegan et al. (2018), Adeyefa et al.
(2018), Kayode & Adegboro (2018).We further sketched the
solution graph of our method and it is evident that the new
method convergence toward the exact solution.
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